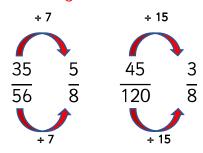
NC Objective: Use Common Factors to Simplify Fractions

Task 1: Answer: She needed to simplify the third fraction further.

Task 2: Answer: 7 and 12 are two relatively prime numbers and don't have common factors (except 1). Also, you don't have a decimal number in a fraction.


Task 3: Answer:

$$\frac{\begin{bmatrix} \overline{7} \\ \overline{6} \end{bmatrix} \begin{bmatrix} \overline{3} \\ \overline{6} \end{bmatrix}}{\begin{bmatrix} \overline{6} \end{bmatrix} \begin{bmatrix} \overline{3} \\ \overline{3} \end{bmatrix}} = \frac{\begin{bmatrix} \overline{1} \\ \overline{9} \end{bmatrix}}{\begin{bmatrix} \overline{9} \\ \overline{1} \end{bmatrix}}$$

Task 4: Answer: No, she isn't. $36 \div 3 = 12$, so she should find $8 \times 12 = 96$.

The correct answer is $\frac{36}{96}$.

Task 5: Answer: Leanna has $\frac{5}{8}$ and Esin has $\frac{3}{8}$, so Leanna has a bigger piece.

NC Objective: Use Common Multiples to Express Fractions in the Same Denomination

Task 1: Answer: Malachi is sometimes correct.

E.g. 1. $\frac{3}{11}$ and $\frac{5}{22}$ (LCM of 11 and 22 is 22, which is not their product).

E.g. 2: $\frac{3}{5}$ and $\frac{1}{6}$ (LCM of 5 and 6 is their product, 5x 6 = 30).

Task 2: Answer: Tia has made a mistake in the first fraction. She should have multiplied the numerator and the denominator by 3: $\frac{3}{8} = \frac{9}{24}$. So, $\frac{5}{12}$ is larger than $\frac{3}{8}$. Rosie has made a mistake while multiplying both fractions.

$$\frac{3}{8} = \frac{9}{24}$$
 and $\frac{5}{12} = \frac{10}{24}$.

Task 3: Answer: There are multiple possibilities. One such possibility is:

$$\begin{array}{c|c} \hline 3 \\ \hline 6 \\ \hline \end{array} = \begin{array}{c} \hline 9 \\ \hline 18 \\ \hline \end{array} = \begin{array}{c} 15 \\ \hline \hline 30 \\ \hline \end{array}$$

Task 4: Answer: $\frac{54}{81}$

Note that statement c) is an extra information.

Task 5: Answer:
$$\frac{2}{3} = \frac{2 \times 17}{3 \times 17} = \frac{34}{51}$$
 or $\frac{2}{3} = \frac{2 \times 18}{3 \times 18} = \frac{36}{54}$ or $\frac{2}{3} = \frac{2 \times 19}{3 \times 19} = \frac{38}{57}$

NC Objective: Compare and Order Fractions, Including Fractions > 1

Task 1: Answer: Yes, Zach is correct. The sequence is in ascending order. It increases by $\frac{5}{12}$. $\frac{13}{12}$, $1\frac{1}{2}$, $2\frac{3}{12}$, $2\frac{3}{4}$, $3\frac{1}{6}$, $3\frac{7}{12}$, 4.

Task 2: Answer: The first step is to find the same denominator for the fractions. It is 32 (LCM of 2, 4 and 32 is 32). Then we must express them in the same denominator.

16 x p must be between 24 and 57. p is a prime number and therefore 16 x p can either be 16 x 2 = 32 or 16 x 3 = 48. p = 2 or 3.

$$\frac{24}{32} < \frac{16 \times p}{32} < \frac{57}{32}$$

Task 3: Answer: You do not compare fractions by comparing only their numerators or only their denominators. Rather, the fractions should be expressed on the same denominator. The lowest common multiple of 3 and 18 is 18, so $\frac{5 \times 6}{3 \times 6} = \frac{30}{18} < \frac{33}{18}$

Task 4: Answer: Both of them. $\frac{5}{16} = \frac{15}{48}$ $\frac{1}{4} = \frac{12}{48}$

$$\frac{7}{24} = \frac{14}{48}$$

Task 5: Answer: The third bag.

$$2\frac{1}{6} = \frac{13}{6} = \frac{39}{18} \qquad \frac{17}{9} = \frac{34}{18}$$
$$2\frac{2}{3} = \frac{8}{3} = \frac{48}{18}$$

NC Objective: Add and Subtract Fractions with Different Denominators and Mixed Numbers, Using the Concept of Equivalent Fractions

Task 1: Answer: $\frac{33}{4}$ (Hint: Largest whole number smaller than 10 is 9)

Task 2: Answer: He sold $\frac{7}{15}$ so the rest was $\frac{8}{15} = 40$ kg $(1 - \frac{7}{15} = \frac{15}{15} - \frac{7}{15} = \frac{8}{15})$

Then $\frac{1}{15} = 5 \text{ kg } (40 \div 8)$

The total quantity of strawberries was $15 \times 5 \text{ kg} = 75 \text{ kg}$.

Task 3: Answer: Width: $7\frac{1}{2} - 1\frac{2}{5} = 6\frac{1}{10}$

$$P = 2 \times (7\frac{5}{10} + 6\frac{1}{10}) = 2 \times 13\frac{6}{10} = 2 \times 13\frac{3}{5} \text{ cm} = 27\frac{1}{5} \text{cm}$$

Task 4: Answer: False.

$$A - B + C = 18 \ \frac{2}{3} - 6 \ \frac{1}{4} + 2 \ \frac{4}{5} \ = \frac{56}{3} - \frac{25}{4} + \frac{14}{5} = \frac{56 \times 20 - 25 \times 15 + 14 \times 12}{60} = \frac{913}{60} = 15 \frac{13}{60}$$

Task 5: Answer: Yes.

$$\frac{\boxed{3}}{\boxed{4}} - \frac{\boxed{5}}{\boxed{8}} = \frac{\boxed{1}}{\boxed{8}}$$

NC Objective: Multiply Simple Pairs of Proper Fractions, Writing the Answer in its Simplest Form

Task 1: Answer: If part I is $\frac{2}{5}$ of the whole tape, the rest is $\frac{3}{5}$.

The second part is then $\frac{3}{7} \times \frac{3}{5} = \frac{9}{35}$ of the whole tape.

So, the third part is $1 - (\frac{2}{5} + \frac{9}{35}) = \frac{12}{35}$

 $\frac{12}{35}$ = 36 cm, so $\frac{1}{35}$ = 3 cm. The whole tape = 35 x 3 cm = 105 cm.

Task 2: Answer: $17 \times 6 = 102$

$$\frac{102}{1} \times \frac{4}{21} = \frac{136}{7} = 19\frac{3}{7}$$

Task 3: Answer: The product of the denominators must be a multiple of 8. The only possibility is if they are 4 and 6. So the numerators have to be 3 and 5.

Task 4: Answer: Rosie is correct. If a fraction is smaller than 1, then the numerator is smaller than the denominator. The product of two fractions both smaller than 1, will be a fraction with a numerator as a product of two smaller numbers over a denominator as a product of two larger numbers.

Task 5: Answer: True.

$$\frac{2}{10}$$
 x $\frac{2}{6}$ = $\frac{4}{60}$. Simplified by 2 is $\frac{2}{30}$.

NC Objective: Divide Proper Fractions by Whole Numbers

Task 1: Answer: Tia is incorrect.

E.g.
$$\frac{9}{13} \div \frac{5}{1} = \frac{9}{13} \times \frac{1}{5} = \frac{9}{65}$$

Task 2: Answer: Yes. Some possibilities are:

$$1. \frac{6}{14} \div 2 = \frac{3}{14};$$

$$2. \frac{3}{7} \div 2 = \frac{3}{14};$$

3.
$$\frac{6}{7} \div 4 = \frac{3}{14}$$
. There are more possibilities.

Task 3: Answer: 1st part: $\frac{1}{6}$

 2^{nd} part: Also $\frac{1}{6}$ (The rest was $\frac{5}{6}$, divided by 5 is $\frac{1}{6}$)

In total:
$$\frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$$
.

Task 4: Answer: Neither. The answers are equivalent fractions.

Task 5: Answer: 8

NC Objective: Associate a Fraction with Division and Calculate Decimal Fraction Equivalents for a Simple Fraction

Task 1: Answer: Each friend got $0.25 = \frac{1}{4}$ of a peach. 4 friends shared one peach. She shared 8 peaches, therefore she had 8 x 4 = 32 friends.

Task 2: Answer: False. 2.3 > 1, $\frac{2}{3}$ < 1.

Task 3: Answer: I disagree with Zach. $\frac{3}{4} \times 12 = 9$ months.

1 12		
$\frac{1}{4}$		

Task 4: Answer: There are multiple possibilities:

0.12 - It is the only number that is less than half.

 $\frac{9}{10}$ - It is the only number with one non-zero digit after the decimal point.

Task 5: Answer: Possible answers are: $5.5 = \frac{11}{2}$, $7.5 = \frac{15}{2}$, $9.5 = \frac{19}{2}$.

NC Objective: Identify the Value of Each Digit in Numbers Given to 3 Decimal Places

Task 1: Answer: 7.903. The 0 in the hundredths place can be replaced with any other digit.

Task 2: Answer: 14.015

The digit 4 is in the ones place. In the other numbers, it's in the tenths place.

Other answers acceptable.

Task 3: Answer: True. In the fraction $\frac{7}{100}$, the digit 7 is in the hundredths place but in 0.7 the digit 7 is in the tenths place.

Task 4: Answer: 3.661; 3.751; 3.841; 3.932; 3.662.

Task 5: Answer: Sometimes.

As the hundreds digits are the same, the tens digits determine the larger of the two numbers.

NC Objective: Multiply and Divide Numbers by 10, 100 and 1,000 giving Answers up to Three Decimal Places

Task 1: Answer: There is one empty box because there are no numbers that can be > 7.32 if they have less than 7,230 thousandths (7.23)

		< 7.32
Number < 7,230 thousandths		0.057 x 100
Number > 703 hundredths	799 ÷ 100, 6.06 x 10	7,310 ÷ 1,000

Task 2: Answer: I disagree with Rosie. She would get the same answer if she divided 4.31 by 10.

Task 3: Answer: Each subsequent number is obtained by multiplying the previous number by 100.

Task 4: Answer: Yes, Malachi is correct. $803 \div 100 = 8.03$

Task 5: Answer: 30

NC Objective: Multiply One-Digit Numbers with up to Two Decimal Places by Whole Numbers

Task 1: Answer:

		2	3	6
×				5
		0.	3	0
		1.	5	0
+		0.	0	0
	1	1.	8	0

Task 2: Answer: She will not have enough money, because $5.5 \times 98 = 539p$ and $6.2 \times 85 = 527p$, so the total amount would be 539p + 527p = 1,066p = £10.66

Task 3: Answer: A = 6, B = 4.5.

Task 4: Answer: Yes, Esin is correct. $3.6 \times 5 = 18 = 4.5 \times 4$

Task 5: Answer: 3.8 x 6 22.8;

 $7.25 \times 4 = 29.$

NC Objective: Use Written Division Methods in Cases Where the Answer has up to Two Decimal Places

Task 2: Answer: 8

Task 3: Answer: $8.44 \div 2 = 4.22$, $3.48 \div 3 = 1.16$, $11.67 \div 2 = 5.835$

Task 4: Answer: 110 and 315. The numbers end with 0 or 5. Other examples could be 190, 490, and 745.

Task 5: Answer: $72.18 \div 3 = 24.06$ 24.06 ÷ 6 = **4.01cm**

NC Objective: Solve Problems Which Require Answers to be Rounded to Specified Degrees of Accuracy

Task 1: Answer: $\frac{5}{9}$ is equivalent to a reccurring decimal.

$$\frac{5}{9} = 0.5555...$$

Task 2: Answer:

I:
$$\frac{1}{3}$$
 x 234 = 78 pages

II:
$$\frac{4}{9}$$
 x (234 - 78) = 69.333... \approx 69 pages

$$234 - (78 + 69) = 87$$
 pages

Task 3: Answer: The answers are recurring decimals and they are rounded to the nearest hundredth.

$$\frac{8}{15}$$
÷ 2 = 0.27 0.7 ÷ 9 = 0.08 $\frac{2}{3}$ x $\frac{2}{3}$ = 0.44

Task 4: Answer: The first hour: $9.36 \div 2 \approx 4.5$ so he needed 5 bottles.

First two hours: $2 \times 9.36 \div 2 = 9.36 \approx 9$ bottles.

Task 5: Answer: They are both correct. Esin has recorded it as a remainder and Tia has rounded to the nearest hundredth.

NC Objective: Recall and Use Equivalences Between Simple Fractions, Decimals and Percentages, Including in Different Contexts

Task 1: Answer:
$$0.25 = 3/12 = 4/16 = 9/36$$
. $0.75 = 15/20$.

Task 3: Answer:
$$0.25 = 1/4 = 2/8 = ... = 8/32$$
. So the answer is A = 8 and B = 32.

Task 4: Answer:
$$A = 750$$
, $B = 270$, $C = 90$. $A - B = 480$

Task 5: Answer: 0.75 of audience are men and women.
$$0.75 \div 3 = 0.25$$
, so there are $2 \times 0.25 = 0.50 = 50\%$ women in the audience.

Task 6: Answer: Leanna is incorrect. She should multiply the numerator by 100 and divide the answer by the denominator.

Task 7: Answer:
$$\frac{4}{9} \times 36 = \frac{144}{9} = 16$$
 students scored between 75 and 90. 0.75 x 16 = 12 boys.

Task 8: Answer:
$$\frac{1}{3} \times 75 = 25$$

 $40\% = 0.40$, so $0.40 \times 75 = 30$
 $75 - (25 + 30) = £20$